Abstract

This paper reports on micromagnetic simulations of the magnetization reversal behavior in polycrystalline Nd-Fe-B sintered magnets using large-scale parallel computing. A multigrain model is introduced to calculate the grain alignment dependence of the coercivity of polycrystalline Nd-Fe-B magnets with various magnetic characteristics at grain boundaries (GBs). The magnetic domain wall motion is accurately treated by dividing the analyzed object into extremely small elements. The multigrain model with a soft magnetic GB phase and a reverse domain at the initial state well reproduces experimental results. The calculations of coercivity with several GB widths are also carried out to seek for the origin of the sudden decrease of coercivity with nearly perfect grain alignment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call