Abstract

The performance of three micromagnetic software were compared: (a) originally developed by Hitachi and refined at Kogakuin Univeristy and Niigata Institute of Technology, (b) developed by Fujitsu, and (c) Magpar, a free, public domain software. A perpendicular write head was modeled to compare the performance of these software. It was found that the finite-difference method (FDM) based micromagnetic software (a) had difficulties with complex structures but required less RAM, while finite-element, boundary integral method (FEM-BIM) based micromagnetic software (b) and (c) could handle complex structures but required more RAM. We derived the quasi-static recording field distributions and the dynamic recording field responses to high-frequency currents of up to 2.0 GHz. We found that there were no major differences in the head field distributions and responses, while FEM-BIM was superior to the FDM for observing magnetization vector rotation as FEM-BIM can handle complex structures with fine meshes in regions of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call