Abstract
The quantitative application of micromagnetic theory to barium ferrite particulate media is reported. The theory includes magnetostatic, anisotropic crystalline, and exchange interactions. It is found that neither packing, stacking, thermal fluctuations, nor curling can account for the discrepancy between the predictions of noninteracting coherent rotation theory and experimental observations. Induced domain nucleation can reduce the coercivity sufficiently: however, ignorance of the nucleation mechanism prevents first principles predictions. Important practical consequences of the calculation include a demonstration that stacked particles switch together, which implies increased recording noise, and quantitative predictions for the effect of thermal fluctuations on barium ferrite coercivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.