Abstract

We present a flexible and efficient approach to modeling the magnetization dynamics in modern SOT-MRAM cells, by coupling charge, spin, and magnetization dynamics in a three-dimensional framework. We expand on existing literature, to obtain spin current boundary conditions for modeling the Rashba-Edelstein effect. We compute the spin–orbit torques originating from both, the spin Hall and Rashba-Edelstein effect, and show that our model can reproduce experimental results for the thickness dependence of the spin torques in an Ir/CoFeB bilayer structure. Furthermore, we verify our approach by simulating magnetization reversal in field-free SOT-MRAM cells, and show that with the inclusion of the interfacial Dzyaloshinskii–Moriya interaction, we obtain domain wall motion similar to previously reported experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call