Abstract

Utilizing micromagnetic modeling, we have explained the unprobed characteristics of 360° full cycle in-plane magnetization rotation and the resulting propagation of a magnetization wave along a ferromagnet nanowire. The magnetization wave, which is generated by setting off spin oscillation at one end of a ferromagnetic strip, propagates till the end of the wire. A perpendicular spin torque oscillator (STO) could generate magnetization rotation at one end of the ferromagnetic strip that is also part of the STO. Our results demonstrate that the oscillation frequency of the spins along the wire maintains excellent fidelity while the spatial wavelength of the magnetic wave increases. The driving mechanism behind the propagation of the wave is found to be exchange-springs, which enables the propagation of the wave without the need for a 'carrier' force, such as spin-transfer torque (STT) or spin Hall effect (SHE). Furthermore, we demonstrate that the gradient of the exchange energy drives the magnetic wave forward, while the in and out of plane anisotropy fields govern the shape of spin oscillation trajectories along the wire. Additionally, we show that stopping the oscillation at the STO end causes the wave to cease propagation after relaxation, and altering the STO rotational chirality leads to merging and annihilating domain walls of opposite winding numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call