Abstract
• We examine the micromachined surfaces of polyurethane polymer. • The effect of various operating parameters on micromachining are investigated. • Experiment performed in air and under water environments with different mask size. Polyurethane (PU) polymer, due to its biocompatibility, weather resistance, and favorable physical properties, finds a number of applications in medical implants, protective coatings, and as a prototype material for structural components in MEMS devices. An excimer laser (wavelength = 248 nm, FWHM = 25 ns) is employed for micromachining of polyurethane (PU) polymer. For air environment, the ablation rate is 0.18 μm/pulse and for underwater environment, the ablation rate is 0.07 μm/pulse (with underwater ablation threshold as 0.10 J/cm 2 ), which concluded low taper angles (∼32°) for in air as compared to high taper angles (∼65°) with underwater micromachining. The experimental results for air and under water micromachining demonstrate ablation process as a combination of photo-thermal and photo-chemical mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.