Abstract

Polydimethylsiloxane (PDMS) is fundamental materials in the field of biotechnology. Because of its biocompatibility, microfabricated PDMS sheets are applied to micro-reactors and microchips for cell culture. Conventionally, the microstructures were fabricated by means of cast or imprint using molds, however it is difficult to fabricate the structures at high aspect ratios such as through-holes/vertical channels. The fabrication of the high-aspect structures would enable us to stack sheets to realize 3D fluidic circuits. In order to achieve the micromachining, direct photo-ablation by short wavelength light is promising. In the previous works, we investigated ablation of transparent materials such as silica glass and poly(methyl methacrylate) induced by irradiation with laser plasma EUV light. We achieved smooth and fine nanomachining. In this work, we applied our technique to PDMS micromachining. We condensed the EUV light onto PDMS surfaces at high power density up to 108 W/cm2 using a Au coated ellipsoidal mirror. We found that PDMS sheet was ablated at a rate up to 440 nm/shot. It should be emphasized that through hole with a diameter of 1 μm was fabricated in a PDMS sheet with a thickness of 4 μm. Thus we demonstrated the micromachining of PDMS sheets using laser plasma EUV light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.