Abstract
Abstract[FeII(Htrz)2(trz)](BF4) spin crossover particles of 85 nm mean size are dispersed in an SU‐8 polymer matrix and spray‐coated onto silicon microcantilevers. The subsequent photothermal treatment of the polymer resist leads to micrometer thick, smooth, and homogeneous coatings, which exhibit well‐reproducible actuation upon the thermally induced spin transition. The actuation amplitude as a function of temperature is accurately determined by combining integrated piezoresistive detection with external optical interferometry, which allows for the assessment of the associated actuation force (9.4 mN), stress (28 MPa), strain (1.0%), and work density (140 mJ cm−3) through a stratified beam model. The dynamical mechanical characterization of the films evidences an increase of the resonance frequency and a concomitant decrease of the damping in the high‐temperature phase, which arises due to a combined effect of the thickness and mechanical property changes. The spray‐coating approach is also successfully extended to scale up the actuators for the centimeter range on a polymer substrate providing perspectives for biomimetic soft actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.