Abstract

Femtosecond laser micromachining (FLM) is a relatively new and promising technology for the micromachining of a wide spectrum of engineering materials with micron and submicron size features. The interaction mechanism of femtosecond laser pulses with matter is not the same as that found in traditional lasers. This manuscript presents a detailed study of the ablation characteristics of a nickel-titanium (NiTi) shape memory alloy in air with femtosecond laser pulses. The single- and multishot ablation threshold fluence and the incubation coefficient (predicting the extent to which accumulation could take place in a material) are evaluated. In addition, morphological changes, such as the emergence of a ripple pattern, are discussed along with the identification of gentle and strong ablation phases. This study provides for the understanding and characterization of NiTi micromachining using FLM technology, which could aid in the identification of new applications for smart materials in the macro-, nano-, and microelectromechanical system domains using this technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.