Abstract

A tunable bandstop filter using fractal electromagnetic bandgap (EBG) structure is designed, simulated and fabricated. The uniform fractal EBG (U-FEBG) structure is realized by replacing the etched rectangular holes with a Minkowski loop generator. A new technique of doubly tapered fractal EBG (DT-FEBG) structure is designed by non-uniform Kaiser distribution on the fractal structures. The Kaiser distribution improves the pass band performance and generates two distant bandgaps. The tunable bandstop filter is tuned by micromachined capacitive bridges. The propagation characteristic of the periodic microelectromechanical system (MEMS) bridges is determined by the dispersion behavior. Different types of parametric analysis are applied to investigate the performance of the MEMS bridges. Surface micromachining fabrication process is employed on the high resistivity silicon substrate to fabricate the filter. The measurement results for the DT-FEBG structure show insertion loss of 1.2 dB and the stop-band rejection of 44 dB. The tuning range of the U-FEBG structure is 1.1 GHz with insertion loss of 1.7–2.5 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.