Abstract
Gas detection measurements based on a micromachined SnO 2 gas sensor with periodically pulsed heater voltage are presented. Additionally, the field-effect-induced changes in resistivity of the sensitive layer caused by the heater voltage were investigated. The combination of both results leads to an improved design for low power SnO 2 gas sensors. In temperature-pulsed mode, the sensor resistances were measured at constant delays after the pulse edges. The measurements were carried out with the common test gases carbon monoxide and nitric dioxide in synthetic air with 50% humidity. In the cold pulse phase, the CO sensor response is higher and shows only a slow decrease with increasing pulse duration. The sensor sensitivity is related to the pulsed heated mode, on the one hand, and the continuously heated, on the other. The comparison of the measurement results reveals that the temperature-pulsed operation mode (TPOM) caused a significant reduction of power consumption and higher sensitivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.