Abstract

Thin film integrated circuits compatible resonant structures using the lowest order symmetric Lamb wave propagating in thin aluminum nitride (AlN) film membranes have been studied. The 2-microm thick, highly coriented AlN piezoelectric films have been grown on silicon by pulsed, direct-current magnetron reactive sputter deposition. The films were deposited at room temperature and had typical full-width, half-maximum value of the rocking curve of about 2 degrees. Thin film plate acoustic resonators were designed and micromachined using low resolution photolithography and deep silicon etching. Plate waves, having a 12-microm wavelength, were excited by means of both interdigital (IDT) and longitudinal wave transducers using lateral field excitation (LW-LFE), and reflected by periodical aluminum-strip gratings deposited on top of the membrane. The existence of a frequency stopband and strong grating reflectivity have been theoretically predicted and experimentally observed. One-port resonator designs having varying cavity lengths and transducer topology were fabricated and characterized. A quality factor exceeding 3000 has been demonstrated at frequencies of about 885 MHz. The IDT based film plate acoustic resonators (FPAR) technology proved to be preferable when lower costs and higher Qs are pursued. The LW-LFE-based FPAR technology offers higher excitation efficiency at costs comparable to that of the thin film bulk acoustic wave resonator (FBAR) technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.