Abstract

This paper reports the development of micromachined thermal shear-stress sensors for underwater applications. The thermal shear-stress sensor is a polysilicon resistor sitting atop a vacuum-insulated nitride diaphragm. Special challenges for underwater measurements, such as the waterproof coating and minimization of pressure crosstalk, have been addressed. More rigid diaphragms than the aerial sensors are implemented to increase the operating range and reduce pressure crosstalk, with the cost of larger power consumption and lower sensitivity. Sensors with different diaphragm dimensions and resistor lengths have been fabricated and tested. Nearly zero pressure sensitivity has been achieved by either reducing the diaphragm width or adjusting the sensing element length. The effects of overheat ratio and operating mode on the sensor's pressure crosstalk have been discussed. Parylene C is chosen as the waterproof material for the underwater shear-stress sensors. The primary failure mode is identified as the corrosion of the soldering pads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.