Abstract
The hemispherical resonator gyro (HRG) is low loss and high stability, spurring recent interest in micro-scale hemispherical resonators. To achieve mode-matching and high-Q performance in a hemispherical resonator, geometric symmetry in combination with low thermoelastic damping structural material are critical. In this work, we describe the development of millimeter scale 3D hemispherical shell resonators fabricated from polycrystalline diamond, a material with low thermoelastic damping and very high stiffness. The relation between the fourth harmonic (4θ) in a Fourier analysis of the resonator's radius r(θ) and frequency mismatch (Δf) of the 2θ elliptical vibration modes of the shell resonator is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.