Abstract

Microlenses are fabricated and investigated for integrated imaging applications. The microlenses are fabricated by an in situ polymer electro-dispensing technique that enables user-controlled microlens sizes and shapes, by direct-dispensing and voltage-tuning with a metal micro-needle tip in a filler solution. Theoretical and experimental analyses are carried out for three limiting-cases of electro-dispensed microlenses: an acute-angle microlens with a 30° contact angle, a right-angle microlens with a 90° contact angle, and an obtuse-angle microlens with a 120° contact angle. It is found that the right-angle microlens, with a 500 μm diameter, yields an especially short focal length (700 μm) and exceedingly large numerical aperture (0.533). These characteristics can meet the needs of emerging applications, such as optical wireless devices, which demand compact device integration and broad field-of-view imaging. The microlenses are tested in optical wireless imaging receivers, for signal-to-noise ratio performance, and it is found that the right-angle microlens can offer significant (10 dB) performance enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.