Abstract

We propose a microlens array-type snapshot hyperspectral microscope system that can provide spatial spectrum sampling according to detector frame rates for the biomedical domain. The system uses a shared optical path design. One path is used to perform direct microscopic imaging with high spatial resolution, while the other is used to collect microscopic images through a microlens array; the images are then spatially cut and reimaged such that they are spaced simultaneously by the prism-grating type hyperspectral imager's dispersion. Rapid acquisition of a three-dimensional data cube measuring 28×14×180 (x×y×λ) can be performed at the detector's frame rate. The system has a spatial resolution of 2.5 µm and can achieve 180-channel sampling of a 100 nm spectrum in the 400-800 nm spectral range with spectral resolution of approximately 0.56 nm. Spectral imaging results from biological samples show that the microlens array-type snapshot hyperspectral microscope system may potentially be applied in real-time biological spectral imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.