Abstract

A microkinetic model was developed and applied to simulate an extensive experimental dataset on methane steam reforming. The data set consisted of 537 data points, and was collected over a Ni/NiAl2O4 catalyst at 843, 858, and 873K in a wide steam-to-carbon ratio range between 0.2 and 7.1. A microkinetic engine modeling tool was applied for the construction and parameter estimation of an elementary step network consisting of 12 reversible reactions. Specific reaction pathways were implemented for the formation of CO and CO2, respectively. The model qualitatively if not quantitatively explains inverse and normal isotope effects experimentally observed at low and high S/C ratios, respectively, and is thermodynamically consistent. A combination of the approach to partial equilibrium (i.e. whether the elementary step proceeds forward or backward) and net rate (i.e. the difference between forward and backward reaction rate) provides novel insight into the oxidation mechanism of CHx and CHxO surface species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.