Abstract

We present an improved theory of image formation by reflection interference contrast microscopy (RICM) for structural studies of stratified films on planar substrates and propose a new theoretical approach to analyzing the surface profile of nonplanar films. We demonstrate the validity of the new approach by analyzing the fringe patterns of RICM images from wedge-shaped liquid films and spherical probes. By simulation of various scenarios, we study the effect of finite-aperture illumination and the shape of the nonplanar interface on the interference fringe pattern of RICM images. We show how the reconstruction of the microscopic topography of the sample from the fringe spacing is corrected by angular and curvature correction terms. We discuss the variation of the mean intensity of the fringe patterns and the decay in the fringe amplitude with increasing fringe order that is caused by nonplanar interfaces of different slope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.