Abstract

Abstract Previous studies have provided evidence of the existence of a pain modulatory feedback pathway consisting of thalamic nucleus submedius (Sm)–ventrolateral orbital cortex-periaqueductal grey pathway, which is activated during acute pain and leads to depression of transmission of nociceptive information in the spinal dorsal horn. The aim of this study was to test the hypothesis that morphine microinjection into the Sm decreased spontaneous pain and bilateral thermal hyperalgesia, as well as ipsilateral mechanical allodynia, induced by subcutaneous injections of bee venom into the rat hind paw. Morphine (1.0, 2.5 or 5.0 m̀g in 0.5 μL) injected into the Sm, contralateral to the bee venominjected paw, depressed spontaneous nociceptive behaviour in a dose-dependent manner. Furthermore, morphine significantly decreased bilateral thermal hyperalgesia and ipsilateral mechanical allodynia 2 h after bee venom injection. These morphine-induced effects were antagonized by 1.0 μg naloxone (an opioid antagonist) microinjected into the Sm 5 min before morphine administration. The results provided further support for the important role of the Sm and Sm-opioid receptors in inhibiting nociceptive behaviour and indicated for the first time that Sm opioid receptors were also effective in inhibiting the hypersensitivity provoked by bee venom-induced inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call