Abstract

The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations (n = 6) or 110 ± 4 nl total in 4 locations (n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related time intervals. In response to microinjections of kyn into the NTS rostral to the obex respiratory rate decreased, and there were increases in the durations of the inspiratory and postinspiratory phases and mean blood pressure. However, bilateral microinjections of kyn into the NTS caudal to obex as well as control vehicle microinjections in the NTS location rostral to obex had no effect on coughing or cardiorespiratory variables. These results are consistent with the existence of a critical component of the cough rhythmogenic circuit located in the rostral ventral and lateral NTS. Neuronal structures of the rostral NTS are significantly involved specifically in the regulation of cough magnitude and phase timing.NEW & NOTEWORTHY The nucleus of the solitary tract contains significant neuronal structures responsible for control of 1) cough excitability, 2) motor drive during cough, 3) cough phase timing, and 4) cough rhythmicity. Significant elimination of neurons in the solitary tract nucleus results in cough apraxia (incomplete and/or disordered cough pattern). The mechanism of the cough impairment is different from that for the concomitant changes in breathing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call