Abstract

Herein, we have investigated the structure of phenyl formate⋅⋅⋅water (PhOF⋅⋅⋅H2 O) dimer and various non-covalent interactions present there using gas-phase laser spectroscopy and microwave spectroscopy combined with quantum chemistry calculations. Two conformers of PhOF⋅⋅⋅H2 O (C1 and T1), built on the two cis/trans conformers of the bare molecule, have been observed in the experiment. In cis-PhOF, there is an nCO → interaction between the lone-pair orbital of the carbonyl oxygen atom and the π* orbital of the phenyl ring, which persists in the monohydrated C1 conformer of PhOF⋅⋅⋅H2 O according to the NBO and NCI analyses. On the other hand, this interaction is absent in the trans-PhOF conformer as the C=O group is away from the phenyl ring. The C1 conformer is primarily stabilized by an interplay between O-H⋅⋅⋅O=C hydrogen bond and O-H⋅⋅⋅π interactions, while the stability of the T1 conformer is primarily governed by the O-H⋅⋅⋅O=C hydrogen bond. The most important finding of the present work is that the conformational preference of the PhOF monomer is retained in its monohydrated complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.