Abstract

A fluctuating charge interaction potential function for alanine-water was constructed in the spirit of newly developed ABEEMσπ/MM(atom-bond electronegativity equalization method at the σπ level fused into molecular mechanics). The properties of gaseous neutral alanine-(H2O)n(n=1–7) clusters were systematically investigated by quantum mechanics(QM) and the constructed ABEEMσπ/MM potential, such as conformations, hydrogen bonds (H-bonds), interaction energies, charge distributions, and so on. The results of ABEEMσπ/MM model are in fair agreement with those of QM and available experimental data. For isolated alanine, compared with those of experimental structure, the average absolute deviations(AAD) of bond length and bond angle are 0.002 nm and 1.4°, respectively. For alanine-water clusters, the AAD of interaction energies and H-bond lengths are only 3.77 kJ/mol and 0.012 nm, respectively, compared to the results of MP2/aug-cc-pVDZ//MP2/6-311+G** method. The ABEEMσπ charges fluctuate with the changing conformation of the system, and can accurately and reasonably reflect the interpolarization between water and alanine. The presented alanine-water potential function may provide a basis for further simulations on related aqueous solutions of biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.