Abstract

Chemical processes in solution are influenced by microheterogeneity (MH), where two liquids seem to be mixed in a macroscopic scale but are microscopically inhomogeneous. We have investigated one of the simplest MH systems, aqueous acetonitrile solution, using soft X-ray absorption spectroscopy (XAS). Molecular interactions of acetonitrile were revealed by C and N K-edge XAS at different concentrations, and those of solvent water were separately revealed by O K-edge XAS. The energy shift of the C≡N π* peak at the C K-edge shows three characteristic concentration regions and a phase-transition-like behavior between them. By comparing the energy shifts in XAS spectra with ab initio quantum chemical inner-shell calculations, we have determined local structures of acetonitrile-water mixtures in three concentration regions and found that the dipole interaction between acetonitrile and water is the key structure to emerge the MH state in the middle concentration region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.