Abstract

With the emergence of highly sensitive analytical techniques, the microanalysis of natural-matrix materials employing smaller sample sizes is increasingly more common, which subsequently warrants a homogeneity assessment for the individual components at the appropriate sampling level. Pressurized liquid extraction (PLE) in combination with gas chromatography/mass spectrometry (GC/MS) has been used to determine the sampling constants and evaluate the relative homogeneity of trace levels of polycyclic aromatic hydrocarbons (PAHs) for two previously certified particulate standard reference materials, SRM 1649a Urban Dust and SRM 1650b Diesel Particulate Matter, in the milligram sampling range. Fluoranthene, pyrene, benz[a]anthracene and benzo[e]pyrene within SRM 1650b Diesel Particulate Matter were deemed to be homogeneous, based on relatively small sampling constants (K (S)<100 mg), whereas the larger sampling constants (K (S)>100 mg) obtained for all PAHs in SRM 1649a Urban Dust suggest more material heterogeneity. The material heterogeneity of ten individual PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene) was also described via nonlinear relationships (i.e., power law) between subsampling error S (s) (%) and sample mass, which are used to predict analyte-specific minimum sample masses that result in a specific level of analytical uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.