Abstract

The specific and excellent properties of the low-dimensional nanomaterials have made them promising building blocks to be integrated into microelectromechanical systems with high performances. Here, we present a new microheater chip for in situ TEM, in which a cross-stacked superaligned carbon nanotube (CNT) film resistor is located on a suspended SiNx membrane via van der Waals (vdW) interactions. The CNT microheater has a fast high-temperature response and low power consumption, thanks to the micro/nanostructure of the CNT materials. Moreover, the membrane bulging amplitude is significantly reduced to only ∼100 nm at 800 °C for the vdW interaction between the CNTs and the SiNx membrane. An in situ observation of the Sn melting process is successfully conducted with the assistance of a customized flexible temperature control system. The uniform wafer-scaled CNT films enable a high level of consistency and cost-effective mass production of such chips. The as-developed in situ chips, as well as the related techniques, hold great promise in nanoscience, materials science, and electrochemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call