Abstract

For a micro-indentation hardness test with non-destructivity, the Nix-Gao model is widely used to describe tested hardness or microhardness variation with an indentation depth induced by indentation size effect, in which tested hardness approaches the macrohardness when the indentation depth is large enough. Based on an analysis of hardness measurements on 10 body-centered cubic steels with diverse microstructure, this paper proposes an analytical relation between microhardness to macrohardness ratio and the indentation depth by explicitly linking characteristic indentation depth (a data-fitting parameter) to grain size and ferrite volume fraction using two different methods. In addition, the normal distribution theory is incorporated to consider the inevitable scatter of identical measurements resulting from material heterogeneity and machining/testing errors. Results show that the proposed model, with 96% reliability, can effectively predict microhardness variation with the indentation depth and its scatter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.