Abstract

PurposeThe purpose of this paper is to present a model to predict the micro-hardness of friction stir processed (FSPed) AZ31B magnesium alloy using response surface methodology (RSM). Another objective is to identify process parameters and through-thickness position which will give higher micro-hardness values. Moreover, the study aims at defining the factor that exhibits the most effect on the micro-hardness. Friction stir processing (FSP) machine can then be fed with the optimized parameters to achieve desirable properties.Design/methodology/approachAn experimental setup was designed to conduct FSP. Several AZ31B magnesium samples were FSPed at different combinations of rotational and translational speeds. The micro-hardness of all the combinations of process parameters was measured at different through-thickness positions. This was followed by an investigation of the three factors on the resulting micro-hardness. RSM was then used to develop a model with three factors and three levels to predict the micro-hardness of FSPed AZ31 magnesium alloy within the covered range. The analyses of variance in addition to experimental verification were both used to validate the model. This was followed by an optimization of the response.FindingsThe model showed excellent capability of predicting the micro-hardness values as well as the optimum values of the three factors that would result in better micro-hardness. The model was able to capture the effects of rotational speed, translational speed, and through-thickness position. Results suggest that micro-hardness values were mostly sensitive to changes in tool rotational speed.Originality/valueFSP is considered to be one of the advanced microstructural modification techniques which is capable of enhancing the mechanical properties of light-weight alloys. However, the lack of accurate models which are capable of predicting the resulted properties from process parameters hinders the widespread utilization of this technique. At the same time, RSM is considered as a vital branch of experimental design due to its ability to develop new processes and optimize their performance. Hence, the developed model is very beneficial and is meant to save time and experimental effort toward effective use of FSP to get the desired/optimum micro-hardness distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call