Abstract

In this work the variation of the surface mechanical properties of starch-based biomaterials with immersion time was followed using microhardness measurements. Two blends with very distinct water uptake capabilities, starch/cellulose acetate (SCA) and starch/poly(ε-caprolactone) (SPCL), were immersed in a phosphate buffer solution (PBS) at 37.5 °C for various times. The microhardness of the blends decreased significantly (∼50% for SPCL and ∼94% for SCA), within a time period of 30 days of immersion, reflecting the different hydrophilic character of the synthetic components of the blends. The dependence of microhardness on the applied loading time and load was also analysed and showed a power law dependency for SCA. Water uptake and weight loss measurements were performed for the same immersion times used in the microhardness experiments. The different swelling/degradation behaviour presented by the blends was related to the respective variation in microhardness. Moreover, complementary characterization of the mechanical properties of SCA and SPCL was accomplished by dynamic mechanical analysis (DMA) and creep measurements. Microhardness measurements proved to be a useful technique for characterizing the mechanical behaviour near the surface of polymeric biomaterials, including in simulated physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.