Abstract

Elliptical cross-sectioned spiral equal-channel extrusion (ECSEE), one of the severe plastic deformation techniques, is of great efficiency in producing bulk ultrafine or nanostructured materials. In this paper, the simulation and experimental researches on ECSEE of high-purity aluminum were conducted to investigate the equivalent strain distribution and microhardness distribution on three orthogonal planes, as well as microstructural evolution. Simulation result shows a significant strain gradient on three planes. Microhardness tests comprise the similar results to strain distribution. According to transmission electron microscopy (TEM) results, microstructural evolution ranged from coarse structures to ultrafine structures by undergoing the shear bands, subgrains, high-angle misorientation grain boundaries and equiaxed structures. There are also some distinctions with reference to grain refinement level, grain boundary styles and dislocation distribution on different positions. The TEM investigations are in good agreement with microhardness tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call