Abstract

The reduced immigration and emigration rates resulting from the lack of landscape connectivity of patches and the hospitality of the intervening matrix could favor the loss of alleles through genetic drift and an increased chance of inbreeding. In order for isolated populations to maintain sufficient levels of genetic diversity and adapt to environmental changes, one important conservation goal must be to preserve or reestablish connectivity among patches in a fragmented landscape. We studied the last known population of Ambystoma leorae, an endemic and critically threatened species. The aims of this study were: (1) to assess the demographic parameters of A. leorae and to distinguish and characterize the microhabitats in the river, (2) to determine the number of existing genetic groups or demes of A. leorae and to describe possible relationships between microhabitats types and demes, (3) to determine gene flow between demes, and (4) to search for geographic locations of genetic discontinuities that limit gene flow between demes. We found three types of microhabitats and three genetically differentiated subpopulations with a significant level of genetic structure. In addition, we found slight genetic barriers. Our results suggest that mole salamander’s species are very sensitive to microhabitat features and relatively narrow obstacles in their path. The estimates of bidirectional gene flow are consistent with the pattern of a stepping stone model between demes, where migration occurs between adjacent demes, but there is low gene flow between distant demes. We can also conclude that there is a positive correlation between microhabitats and genetic structure in this population.

Highlights

  • Habitat loss is the leading cause of species declines and extinctions worldwide [1]

  • Small habitat patches may contain small populations isolated from conspecifics that are unreachable due to migration barriers. These populations are at great extinction risk at the hand of either stochastic or further deterministic causes, as their genetic diversity and subsequent biological fitness is reduced over time

  • The maximum number of mole salamanders was found at site D3–D6

Read more

Summary

Introduction

Habitat loss is the leading cause of species declines and extinctions worldwide [1]. Habitat fragmentation by human activity poses further problems for species already in decline. Small habitat patches may contain small populations isolated from conspecifics that are unreachable due to migration barriers. These populations are at great extinction risk at the hand of either stochastic or further deterministic causes, as their genetic diversity and subsequent biological fitness is reduced over time. The reduced immigration and emigration rates resulting from the lack of landscape connectivity between patches and the hospitality of the intervening matrix could favor the loss of alleles through genetic drift and an increased chance of inbreeding

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call