Abstract

The physical characteristics of an implant surface can determine and/or facilitate osseointegration processes. In this sense, a new implant surface with microgrooves associated with plus double acid treatment to generate roughness was evaluated and compared in vitro and in vivo with a non-treated (smooth) and double acid surface treatment. Thirty disks and thirty-six conical implants manufactured from commercially pure titanium (grade IV) were prepared for this study. Three groups were determined, as described below: Group 1 (G1), where the samples were only machined; group 2 (G2), where the samples were machined and had their surface treated to generate roughness; and test group 3 (G3), where the samples were machined with microgrooves and the surface was treated to generate the roughness. For the in vitro analysis, the samples were submitted to scanning microscopy (SEM), surface profilometry, the atomic force microscope (MFA) and the surface energy test. For the in vivo analyses, thirty-six implants were placed in the tibia of 9 New Zealand rabbits in a randomized manner, after histological and histomorphometric analysis, to determine the level of contact between the bone and implant (BIC%) and the bone area fraction occupancy (BAFO%) inside of the threads. The data collected were statistically analyzed between groups (p < 0.05). The in vitro evaluations showed different roughness patterns between the groups, and the G3 group had the highest values. In vivo evaluations of the BIC% showed 50.45 ± 9.57% for the G1 group, 55.32 ± 10.31% for the G2 group and 68.65 ± 9.98% for the G3 group, with significant statistical difference between the groups (p < 0.0001). In the BAFO% values, the G1 group presented 54.97 ± 9.56%, the G2 group 59.09 ± 10.13% and the G3 group 70.12 ± 11.07%, with statistical difference between the groups (p < 0.001). The results obtained in the evaluations show that the surface with microgrooves stimulates the process of osseointegration, accelerating the healing process, increasing the contact between the bone and the implant and the area of new bone formation.

Highlights

  • The rehabilitation of dental losses through osseointegrated implants has reached a fairly high level of confidence and has been used as a frequent treatment option in dentistry

  • Several studies have shown that physical changes and chemical changes can improve and/or accelerate the osseointegration process

  • Many findings on the behavior of different surfaces of titanium implants have already been made, there are still several points that need further scientific evidence, such as the relationship between cell culture results and the responses of these materials after being implanted in living organisms. In this way, based on cellular studies, in which the benefits and the possibility of directing the cellular growth with the elaboration of microgrooves on the surface of the implants were demonstrated [15,18,19], we proposed the present animal study to evaluate and compare in vivo the influence of a surface with the microgrooves modification plus micorugosities on the osseointegration, when compared to that of machined and treated implants without microgrooves

Read more

Summary

Introduction

The rehabilitation of dental losses through osseointegrated implants has reached a fairly high level of confidence and has been used as a frequent treatment option in dentistry. To improve the events required by the osseointegration process and to increase the quantity and quality of the union between the bone tissue and the surface of the implant, in view of possible adverse conditions, numerous propositions of implant surface changes were proposed [7]. Several studies have shown that physical changes (roughness) and chemical changes (adhesion of substrates) can improve and/or accelerate the osseointegration process. Among these modifications of the surface characteristics of titanium implants, this may be carried out by additive methods (titanium or hydroxyapatite deposition) [8,9] or by subtractive methods (chemical attack, blasting or laser) [7,10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call