Abstract
Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neuronal tissue. Micropatterns can significantly influence neurite outgrowth, neurite length, orientation, extracellular matrix expression, neuron differentiation, and migrating velocity. We analyzed the neuritogenesis and neurite outgrowth of PC12 cells in three-dimensional Si wafer with various micropatterns fabricated using photolithography and etching techniques. When nerve growth factor was added into culture medium, PC12 cells started to grow neurites. Extended neurites were significantly affected by different patterns and displayed higher growth-associated protein-43 expression. Cellular performance including growth rate, bipolar phenotype elongation, neurite extension, and growth-associated protein-43 expression of the PC12 cells with a differentiated character are higher on a grooved substrate. However, the grooved pattern can restrict the motility of PC12 cells and decrease the velocity of cellular movement. The average of the number of neurites per cell is the highest on the pillar substrate, but their neurite length is the shortest. In contrast, actin and lamimin expression, motion track, angular deviation, and movement velocity of PC12 cells are most excellent on the planar Si wafer. These findings confirmed that topographical features can cooperatively act with nerve growth factor, signaling the regulation of the formation of neurites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.