Abstract

This paper proposes microgrid (MG) bidding strategy in the transactive energy market (TEM), in which market participants are able to negotiate and trade by a new-designed smart contract (SC) in a peer-to-peer way. In such a market, MG can balance its deviations, which are the resultant of the intermittency of the renewable energy sources, and the volatility of the load. In this paper, the uncertainty is handled by interval optimization. By participation in the TEM, the MG bidding problem is a bi-level optimization with interval coefficient, in which the MG’s profit maximizes in the upper level and the rivals’ behaviour in the TEM are modelled in the lower level. In order to solve the aforementioned problem, the proposed model recasts as a single-level interval optimization problem by the Karush-Kuhn-Tucker (KKT) conditions and the interval optimization concept. Simulation results show the applicability of the proposed model and realize the 1.7% increase in the MG profit for a 4-hour duration basis TEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call