Abstract

Recently, Distributed Energy Resources (DERs) are becoming more attractive to supply local loads under the concept of microgrids. These new parts of the power system have basically different dynamics compared with conventional power plants. Most of them are connected to the grid by power electronic interfaces, and their dynamic is determined by their controller. In this paper, the effect of the increased penetration of DERs on the load frequency problem of power systems is studied. The DERs of microgrids in each area are controlled to change their active power at Point of Common Coupling (PCC) after a disturbance in the power system. It is shown that with appropriate control of DERs in microgrids, the frequency deviation of the power system will decrease and the stability margin can be increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.