Abstract

Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. However, one of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. Although the development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. This paper summarizes the history of this international initiative along with a description of some of the flight hardware systems and crystallization results.

Highlights

  • The use of X-ray crystallography to determine the structures of macromolecules has progressed markedly in recent years

  • The research was performed by group of international investigators who were sponsored by space agencies from several countries including the National Aeronautics and Space Administration (NASA), ESA, JAXA, Canadian Space Agency (CSA), German Aerospace Center (DLR) and the China National Space Administration

  • Positive results from these investigations combined with more frequent access to the unique microgravity environment should attract a large group of users from academia and industry

Read more

Summary

Microgravity protein crystallization

Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. One of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. The development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. Npj Microgravity (2015) 1, 15010; doi:10.1038/npjmgrav.2015.10; published online 3 September 2015

INTRODUCTION
Microgravity in gravity
Polysulfone Cylinders
More recent research of a quantitative nature
SOURCES OF CRYSTAL IMPROVEMENT IN MICROGRAVITY
Review of microgravity protein crystallization A McPherson and L James DeLucas
Review of microgravity protein crystallization
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.