Abstract
Changes in cell–matrix and cell-to-cell adhesion patterns are dramatically fostered by the microgravity exposure of living cells. The modification of adhesion properties could promote the emergence of a migrating and invasive phenotype. We previously demonstrated that short exposure to the simulated microgravity of human keratinocytes (HaCaT) promotes an early epithelial–mesenchymal transition (EMT). Herein, we developed this investigation to verify if the cells maintain the acquired invasive phenotype after an extended period of weightlessness exposure. We also evaluated cells’ capability in recovering epithelial characteristics when seeded again into a normal gravitational field after short microgravity exposure. We evaluated the ultra-structural junctional features of HaCaT cells by Transmission Electron Microscopy and the distribution pattern of vinculin and E-cadherin by confocal microscopy, observing a rearrangement in cell–cell and cell–matrix interactions. These results are mirrored by data provided by migration and invasion biological assay. Overall, our studies demonstrate that after extended periods of microgravity, HaCaT cells recover an epithelial phenotype by re-establishing E-cadherin-based junctions and cytoskeleton remodeling, both being instrumental in promoting a mesenchymal–epithelial transition (MET). Those findings suggest that cytoskeletal changes noticed during the first weightlessness period have a transitory character, given that they are later reversed and followed by adaptive modifications through which cells miss the acquired mesenchymal phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.