Abstract

BackgroundAbundant evidence suggests that the prevalence and risk of depression in people with diabetes is high. However, the pathogenesis of diabetes-related depression remains unclear. Since neuroinflammation is associated with the pathophysiology of diabetic complications and depression, this study aims to elucidate the neuroimmune mechanism of diabetes-related depression. MethodsMale C57BL/6 mice were injected with streptozotocin to establish a diabetes model. After screening, diabetic mice were treated with the NLRP3 inhibitor MCC950. Then, metabolic indicators and depression-like behaviors were evaluated in these mice, as well as their central and peripheral inflammation. To explore the mechanism of high glucose-induced microglial NLRP3 inflammasome activation, we performed in vitro studies focusing on its canonical upstream signal I (TLR4/MyD88/NF-κB) and signal II (ROS/PKR/P2X7R/TXNIP). ResultsDiabetic mice exhibited depression-like behaviors and activation of NLRP3 inflammasome in hippocampus. In vitro high-glucose (50 mM) environment primed microglial NLRP3 inflammasome by promoting NF-κB phosphorylation in a TLR4/MyD88-independent manner. Subsequently, high glucose activated the NLRP3 inflammasome via enhancing intracellular ROS accumulation, upregulating P2X7R, as well as promoting PKR phosphorylation and TXNIP expression, thereby facilitating the production and secretion of IL-1β. Inhibition of NLRP3 with MCC950 significantly restored hyperglycemia-induced depression-like behavior and reversed the increase in IL-1β levels in the hippocampus and serum. ConclusionThe activation of NLRP3 inflammasome, probably mainly in hippocampal microglia, mediates the development of depression-like behaviors in STZ-induced diabetic mice. Targeting the microglial inflammasome is a feasible strategy for the treatment of diabetes-related depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call