Abstract

Microglia express three isoforms of the NADPH oxidase, Nox1, Nox2 and Nox4, with the potential to produce superoxide (O(2) ˙(-) ). Microglia also express neurotransmitter receptors, which can modulate microglial responses. In this study, microglial activity of Nox1, Nox2 and Nox4 in primary rat cultured microglia or the rodent BV2 cell line were altered by microglial neurotransmitter receptor modulation. Glutamate, GABA or ATP triggered microglial O(2) ˙(-) production via Nox activation. Nox activation was elicited by agonists of metabotropic mGlu3 receptors and by group III receptors, by GABA(A) but not GABA(B) receptors, and by purinergic P2X(7) or P2Y(2/4) receptors but not P2Y(1) receptors, and inhibited by metabotropic glutamate receptor 5 antagonists. The neurotransmitters also modulated Nox mRNA expression and NADPH activity. The activation of Nox by BzATP or GABA promoted a neuroprotective phenotype whilst the activation of Nox by glutamate promoted a neurotoxic phenotype. Taken together, these data indicate that microglial neurotransmitter receptors can signal via Nox to promote neuroprotection or neurotoxicity. This has implications for the subsequent neurotoxic profile of microglia when neurotransmitter levels may become skewed in neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.