Abstract

Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are clinically distinct, yet share synaptic dysfunction as a common brain pathophysiology. Neurodegenerative diseases such as Huntington’s disease (HD) entail a neuroinflammatory cascade of molecular and cellular events which can contribute to the death of neurons. Emerging roles for supportive glial cells such as microglia and astrocytes in the ongoing regulation of neural synapses and brain excitability raise the possibility that some of the synaptic pathology and/or inflammatory events could be a direct consequence of malfunctioning glial cells. Focusing on microglia, we cross-examined 12 recently published studies in which microglial dysfunction was induced/identified in a cell-autonomous manner and its functional consequence on neural development, brain volume, functional connectivity, inflammatory response and synaptic regulation were evaluated; in many cases, the onset of symptoms relevant to all three neurodevelopmental disorders were assessed behaviorally. Challenging the classic notion of microglial activation as an inflammatory response to neuropathology, our compilation clarifies that microglial dyshomeostasis itself can consequently disrupt neural homeostasis, leading to neuropathology and symptom onset. This further warranted defining the molecular signatures of context-specific microglial pathology relevant to human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.