Abstract

Diffusion tensor imaging (DTI) has fundamentally transformed how we interrogate diseases and disorders of the brain in neuropsychiatric illness. DTI and recently developed multicompartment diffusion-weighted imaging (MC-DWI) techniques, such as NODDI (neurite orientation dispersion and density imaging), measure diffusion anisotropy presuming a static neuroglial environment; however, microglial morphology and density are highly dynamic in psychiatric illness, and how alterations in microglial density might influence intracellular measures of diffusion anisotropy in DTI and MC-DWI brain microstructure is unknown. To address this question, DTI and MC-DWI studies of murine brains depleted of microglia were performed, revealing significant alterations in axonal integrity and fiber tractography in DTI and in commonly used MC-DWI models. With accumulating evidence of the role of microglia in neuropsychiatric illness, our findings uncover the unexpected contribution of microglia to measures of axonal integrity and structural connectivity and provide unanticipated insights into the potential influence of microglia in diffusion imaging studies of neuropsychiatric disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.