Abstract

Store-operated Ca2+ entry (SOCE) mediated by calcium release-activated calcium (CRAC) channels contributes to calcium signaling. The resulting intracellular calcium increases activate calcineurin, which in turn activates immune transcription factor nuclear factor of activated T cells (NFAT). Microglia contain CRAC channels, but little is known whether these channels play a role in acute brain insults. We studied a novel CRAC channel inhibitor to explore the therapeutic potential of this compound in microglia-mediated injury. Cultured microglial BV2 cells were activated by Toll-like receptor agonists or IFNγ. Some cultures were treated with a novel CRAC channel inhibitor (CM-EX-137). Western blots revealed the presence of CRAC channel proteins STIM1 and Orai1 in BV2 cells. CM-EX-137 decreased nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in activated microglia and reduced agonist-induced intracellular calcium accumulation in microglia, while suppressing inflammatory transcription factors nuclear factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Male C57/BL6 mice exposed to experimental brain trauma and treated with CM-EX-137 had decreased lesion size, brain hemorrhage, and improved neurological deficits with decreased microglial activation, iNOS and Orai1 and STIM1 levels. We suggest a novel anti-inflammatory approach for managing acute brain injury. Our observations also shed light on new calcium signaling pathways not described previously in brain injury models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call