Abstract

Background Pulsed radiofrequency (PRF) on the dorsal root ganglion (DRG) has been applied to alleviate neuropathic pain effectively, yet the mechanisms underlying pain reduction owing to this treatment are not clarified completely. The activated microglia, brain-derived neurotrophic factor (BDNF), phosphatidylinositol 3-kinase (PI3K), and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal cord were demonstrated to be involved in developing neuropathic pain. Also, it has been just known that PRF on DRG inhibits the microglial activation in nerve injury rats. Here, we aim to investigate whether PRF treatment could regulate the levels of BDNF, PI3K, and p-ERK in the spinal cord of rats with spared nerve injury (SNI) via suppressing the spinal microglia activation to ease neuropathic pain. Methods The rats with SNI were intrathecally treated with minocycline (specific microglia inhibitor) or same volume of dimethyl sulfoxide once daily, beginning from 1 h before nerve transection to 7 days. PRF was applied adjacent to the L4-L5 DRG of rats with SNI at 45 V for 6 min on the seventh postoperative day, whereas the free-PRF rats were treated without PRF. The withdrawal thresholds were studied, and the spinal levels of ionized calcium-binding adapter molecule 1 (Iba1), BDNF, PI3K, and p-ERK were calculated by western blot analysis, reverse transcription-polymerase chain reaction, and immunofluorescence. Results The paw withdrawal mechanical threshold and paw withdrawal thermal latency decreased in the ipsilateral hind paws after SNI, and the spinal levels of Iba1, BDNF, PI3K, and p-ERK increased on day 21 after SNI compared with baseline (P < 0.01). An intrathecal injection of minocycline led to the reversal of SNI-induced allodynia and increase in levels of Iba1, BDNF, PI3K, and p-ERK. Withdrawal thresholds recovered partially after a single PRF treatment for 14 days, and SNI-induced microglia hyperactivity, BDNF upregulation, and PI3K and ERK phosphorylation in the spinal cord reduced on D14 due to the PRF procedure. Conclusion Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by the therapy of PRF on DRG to ease SNI-induced neuropathic pain in rats.

Highlights

  • Neuropathic pain is a kind of refractory pain that arises as a direct consequence of a lesion or disease affecting the somatosensory system [1, 2]

  • We investigated whether Pulsed radiofrequency (PRF) treatment could regulate the levels of brain-derived neurotrophic factor (BDNF), phosphatidylinositol 3-kinase (PI3K), and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal cord of spared nerve injury (SNI) rats via suppressing the spinal microglia activation to alleviate the neuropathic pain

  • The SNI group displayed longlasting mechanical allodynia (P < 0.01; Figure 1(a)) and thermal hyperalgesia (P < 0.01; Figure 1(b)) in their ipsilateral paws, which reached a peak on the fifth day and maintained stable withdrawal thresholds until the end of observation

Read more

Summary

Introduction

Neuropathic pain is a kind of refractory pain that arises as a direct consequence of a lesion or disease affecting the somatosensory system [1, 2]. Pulsed radiofrequency (PRF) on the dorsal root ganglion (DRG) has been applied to alleviate neuropathic pain effectively, yet the mechanisms underlying pain reduction owing to this treatment are not clarified completely. We aim to investigate whether PRF treatment could regulate the levels of BDNF, PI3K, and p-ERK in the spinal cord of rats with spared nerve injury (SNI) via suppressing the spinal microglia activation to ease neuropathic pain. Withdrawal thresholds recovered partially after a single PRF treatment for 14 days, and SNI-induced microglia hyperactivity, BDNF upregulation, and PI3K and ERK phosphorylation in the spinal cord reduced on D14 due to the PRF procedure. Microglial BDNF, PI3K, and p-ERK in the spinal cord are suppressed by the therapy of PRF on DRG to ease SNI-induced neuropathic pain in rats

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call