Abstract

Chromogranin A is up-regulated in the senile plaques of Alzheimer's brain and is a novel activator of microglia, transforming them to a neurotoxic phenotype. Treatment of primary cultures of rat brain microglia or the murine N9 microglial cell line with chromogranin A resulted in nitric oxide production, which triggered microglial apoptosis. Exposure of microglia to chromogranin A resulted in a fall in mitochondrial membrane potential. Mitochondrial depolarisation and apoptosis were reduced significantly by cyclosporin A, but not by the calcineurin inhibitor FK506. Cytochrome c did not translocate from the mitochondria to the cytosol, but its expression became significantly enhanced within the mitochondria. Inhibition of caspase 1 attenuated chromogranin A-induced microglial apoptosis, but did not prevent mitochondrial depolarisation, indicating that apoptosis occurred downstream of mitochondrial depolarisation. Conversely, staurosporine-induced microglial apoptosis led to mitochondrial cytochrome c release, but not caspase 1 activation. Our findings provide insight into the pathways controlling activation-triggered microglial apoptosis and may point to routes for the modulation of microglial evoked neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.