Abstract

Neoangiogenesis, a hallmark feature of all malignancies, is robust in glioblastoma (GBM). Vascular endothelial growth factor (VEGF) has long been regarded as the primary pro-angiogenic molecule in GBM. However, anti-VEGF therapies have had little clinical efficacy, highlighting the need to explore VEGF-independent mechanisms of neoangiogenesis. Olfactomedin-like 3 (OLFML3), a secreted glycoprotein, is an established proangiogenic factor in many cancers, but its role in GBM neoangiogenesis is unknown. To gain insight into the role of OLFML3 in microglia-mediated angiogenesis, we assessed endothelial cell (EC) viability, migration and differentiation following (1) siRNA knockdown targeting endogenous EC Olfml3 and (2) EC exposure to human recombinant OLFML3 (rhOLFML3; 10 ng/mL, 48 h), and conditioned medium (CM) from isogenic control and Olfml3−/− microglia (48 h). Despite a 70% reduction in Olfml3 mRNA levels, EC angiogenic parameters were not affected. However, exposure to both rhOLFML3 and isogenic control microglial CM increased EC viability (p < 0.01), migration (p < 0.05) and differentiation (p < 0.05). Strikingly, these increases were abolished, or markedly attenuated, following exposure to Olfml3−/− microglial CM despite corresponding increased microglial secretion of VEGF-A (p < 0.0001). Consistent with reports in non-CNS malignancies, we have demonstrated that OLFML3, specifically microglia-derived OLFML3, promotes VEGF-independent angiogenesis in primary brain microvascular ECs and may provide a complementary target to mitigate neovascularization in GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call