Abstract

BackgroundAxon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin sheath. Interleukin-1β (IL-1β) produced by microglia may cause myelination disturbances through suppression of oligodendrocyte progenitor cell maturation in the septic neonatal rats. Here, we explored if a microglia-derived IL-1β would disturb axon development in the corpus callosum (CC) following lipopolysaccharide (LPS) administration, and if so, whether it is associated with disorder of synapse formation in the cerebral cortex and node of Ranvier.MethodsSprague-Dawley rats (1-day old) in the septic model group were intraperitoneally administrated with lipopolysaccharide (1 mg/kg) and then sacrificed for detection of IL-1β, interleukin-1 receptor (IL-1R1), neurofilament-68, neurofilament-160, and neurofilament-200, proteolipid, synaptophysin, and postsynaptic density 95 (PSD95) expression by western blotting and immunofluorescence. Electron microscopy was conducted to observe alterations of axonal myelin sheath and synapses in the cortex, and proteolipid expression was assessed using in situ hybridization. The effect of IL-1β on neurofilament and synaptophysin expression in primary neuron cultures was determined by western blotting and immunofluorescence. P38-MAPK signaling pathway was investigated to determine whether it was involved in the inhibition of IL-1β on neurofilament and synaptophysin expression.ResultsIn 1-day old septic rats, IL-1β expression was increased in microglia coupled with upregulated expression of IL-1R1 on the axons. The expression of neurofilament-68, neurofilament-160, and neurofilament-200 (NFL, NFM, NFH) and proteolipid (PLP) was markedly reduced in the CC at 7, 14, and 28 days after LPS administration. Simultaneously, cortical synapses and mature oligodendrocytes were significantly reduced. By electron microscopy, some axons showed smaller diameter and thinner myelin sheath with damaged ultrastructure of node of Ranvier compared with the control rats. In the cerebral cortex of LPS-injected rats, some axo-dendritic synapses appeared abnormal looking as manifested by the presence of swollen and clumping of synaptic vesicles near the presynaptic membrane. In primary cultured neurons incubated with IL-1β, expression of NFL, NFM, and synaptophysin was significantly downregulated. Furthermore, p38-MAPK signaling pathway was implicated in disorder of axon development and synaptic deficit caused by IL-1β treatment.ConclusionsThe present results suggest that microglia-derived IL-1β might suppress axon development through activation of p38-MAPK signaling pathway that would contribute to formation disorder of cortical synapses and node of Ranvier following LPS exposure.

Highlights

  • Axon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin sheath

  • The present results suggest that microglia-derived IL-1β might suppress axon development through activation of p38-MAPK signaling pathway that would contribute to formation disorder of cortical synapses and node of Ranvier following LPS exposure

  • Number of neurons in the cerebral cortex To ascertain if there was a significant loss of neurons in the whole cortex in the frontal lobe after LPS treatment, the sections from the control and septic rats at 7, 14, and 28 days were incubated with antibodies against NeuN and Caspase-3, an apoptotic marker

Read more

Summary

Introduction

Axon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin sheath. Interleukin-1β (IL-1β) produced by microglia may cause myelination disturbances through suppression of oligodendrocyte progenitor cell maturation in the septic neonatal rats. A large number of immune effector cells are mobilized into the neonatal circulation [1,2,3] These immune cells release proinflammatory cytokines such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) which readily cross the blood-brain barrier into the brain parenchyma [4]. We provide evidences that IL-1β produced by activated microglia could induce disorder of axon development and synaptic deficit in septic neonatal brain. It is suggested that microglia-derived IL-1β may have a negative impact on axon development and synapse formation through activation of p38-MAPK signaling pathway after LPS administration

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call