Abstract

Treatment and potential cure of lysosomal and peroxisomal diseases, heretofore considered fatal, has become a reality during the past decade. Bone marrow transplantation, (BMT), has provided a method for replacement of the disease-causing enzyme deficiency. Cells derived from the donor marrow continue to provide enzyme indefinitely. Several scores of patients with diseases as diverse as metachromatic leukodystrophy, adrenoleukodystrophy, globoid cell leukodystrophy, Hurler syndrome (MPS I-H), Maroteaux-Lamy (MPS VI) Gaucher disease, and fucosidosis have been successfully treated following long-term engraftment. Central nervous system (CNS) manifestations are also prevented or ameliorated in animal models of these diseases following engraftment from normal donors. The microglial cell system has been considered to be the most likely vehicle for enzyme activity following bone marrow engraftment. Microglia in the mature animal or human are derived from the newly engrafted bone marrow. Graft-v-host disease activation of the microglia is also of importance. This article will summarize some of the pertinent literature relative to the role of microglia in such transplant processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.