Abstract

Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia). The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM) and of the selective P2Y12 antagonist AR-C66096 (0.1 μM), suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in microglia with P2Y13 receptors to prevent proliferation. IL-1β also attenuated the proliferative effect of ADPβS in astrocyte cultures. However, in co-cultures, the anti-IL-1β antibody was unable to recover the ADPβS-proliferative effect, an effect that was achieved by the anti-IL-1α and anti-TNF-α antibodies. It is concluded that microglia control the P2Y1,12 receptor-mediated astroglial proliferation through a P2Y12,13 receptor-mediated mechanism alternative to the IL-1β suppressive pathway that may involve the contribution of the cytokines IL-1α and TNF-α.

Highlights

  • Astrocytes and microglia respond to all types of central nervous system (CNS) insults, undergoing through several morphological and functional changes to adapt to the requirements of the surrounding inflammatory response

  • Co-cultures and astrocyte cultures, were used in the experiments to identify microglia P2Y receptor subtype(s) and to explore potential paracrine mechanisms involved in the control of the ADPβS-induced astroglial proliferation

  • Unlike the anti-IL-1β antibody, both the anti-IL-1α and the anti-TNF-α antibodies had no effect when tested alone, but restored the ADPβS-proliferative effect to levels close to those observed in astrocyte cultures (Figure 6B). These results suggest that activation of microglia P2Y12,13 receptors by ADPβS may induce the release of IL-1α and TNF-α that control astroglial proliferation. Nucleotides, such as ATP and ADP are massively present in the extracellular medium during brain lesion, and were shown to activate P2Y receptors, modulating astroglial proliferation through mechanisms that involve communication between microglia and astrocytes (Quintas et al, 2011b)

Read more

Summary

Introduction

Astrocytes and microglia respond to all types of central nervous system (CNS) insults, undergoing through several morphological and functional changes to adapt to the requirements of the surrounding inflammatory response. Pro-inflammatory cytokines attain high extracellular concentrations at the early stages of the inflammatory response and trigger, or modulate, the course of astrogliosis (Buffo et al, 2010). Since microglia are the main source of inflammatory mediators, these cells are regarded as active players in orchestrating the progression of astrogliosis. An increase in microglia-derived mediators, are primary events that occur in the inflammatory response, even before the astrocytes response (Zhang et al, 2010), supporting the relevance of a continuous communication between microglia and astrocytes during inflammatory insults, to control astrogliosis

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call