Abstract

Major depressive disorder (MDD) is a prevalent psychiatric disease that involves malfunctions of different cell types in the brain. Accumulating studies started to reveal that microglia, the primary resident immune cells, play an important role in the development and progression of depression. Microglia respond to stress-triggered neuroinflammation, and through the release of proinflammatory cytokines and their metabolic products, microglia may modulate the function of neurons and astrocytes to regulate depression. In this review, we focused on the role of microglia in the etiology of depression. We discussed the dynamic states of microglia; the correlative and causal evidence of microglial abnormalities in depression; possible mechanisms of how microglia sense depression-related stress and modulate depression state; and how antidepressive therapies affect microglia. Understanding the role of microglia in depression may shed light on developing new treatment strategies to fight against this devastating mental illness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call