Abstract

Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.