Abstract

We used the QH1 antibody to study changes in the morphological features and distribution of microglial cells throughout development in the quail cerebellum. Few microglial precursors were present in the cerebellar anlage before the ninth incubation day (E9), whereas many precursors apparently entered the cerebellum from the meninges in the basal region of the cerebellar peduncles between E9 and E16. From this point of entry into the nervous parenchyma, they spread through the cerebellar white matter, forming a 'stream' of labeled cells that could be seen until hatching (E16). The number of microglial cells in the cerebellar cortex increased during the last days of embryonic life and first posthatching week, whereas microglial density within the white matter decreased after hatching. As a consequence, the differences in microglial cell density observed in the cerebellar cortex and the white matter during embryonic life diminished after hatching, and microglia showed a nearly homogeneous pattern of distribution in adult cerebella. Ameboid and poorly ramified microglial cells were found in developing stages, whereas only mature microglia appeared in adult cerebella. Our observations suggest that microglial precursors enter the cerebellar anlage mainly by traversing the pial surface at the basal region of the peduncles, then migrate along the white matter, and finally move radially to the different cortical layers. Differentiation occurs after the microglial cells have reached their final position. In other brain regions the development of microglia follows similar stages, suggesting that these steps are general rules of microglial development in the central nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.